113 research outputs found

    Indirect measurement of the magnetocaloric effect using a novel differential scanning calorimeter with magnetic field

    Get PDF
    Curli are bacterial appendages involved in the adhesion of cells to surfaces; their synthesis is regulated by many genes such as <i>csgD</i> and <i>ompR</i>. The expression of the two curli subunits (CsgA and CsgB) in <i>Escherichia coli</i> (<i>E. coli</i>) is regulated by CsgD; at the same time, <i>csgD</i> transcription is under the control of OmpR. Therefore, both genes are involved in the control of curli production. In this work, we elucidated the role of these genes in the nanomechanical and adhesive properties of <i>E. coli</i> MG1655 (a laboratory strain not expressing significant amount of curli) and its curli-producing mutants overexpressing OmpR and CsgD, employing atomic force microscopy (AFM). Nanomechanical analysis revealed that the expression of these genes gave origin to cells with a lower Young’s modulus (<i>E</i>) and turgidity (<i>P</i><sub>0</sub>), whereas the adhesion forces were unaffected when genes involved in curli formation were expressed. AFM was also employed to study the primary structure of the curli expressed through the freely jointed chain (FJC) model for polymers. CsgD increased the number of curli on the surface more than OmpR did, and the overexpression of both genes did not result in a greater number of curli. Neither of the genes had an impact on the structure (total length of the polymer and number and length of Kuhn segments) of the curli. Our results further suggest that, despite the widely assumed role of curli in cell adhesion, cell adhesion force is also dictated by surface properties because no relation between the number of curli expressed on the surface and cell adhesion was found

    Three Dimensional Polarimetric Neutron Tomography of Magnetic Fields

    Get PDF
    Through the use of Time-of-Flight Three Dimensional Polarimetric Neutron Tomography (ToF 3DPNT) we have for the first time successfully demonstrated a technique capable of measuring and reconstructing three dimensional magnetic field strengths and directions unobtrusively and non-destructively with the potential to probe the interior of bulk samples which is not amenable otherwise. Using a pioneering polarimetric set-up for ToF neutron instrumentation in combination with a newly developed tailored reconstruction algorithm, the magnetic field generated by a current carrying solenoid has been measured and reconstructed, thereby providing the proof-of-principle of a technique able to reveal hitherto unobtainable information on the magnetic fields in the bulk of materials and devices, due to a high degree of penetration into many materials, including metals, and the sensitivity of neutron polarisation to magnetic fields. The technique puts the potential of the ToF time structure of pulsed neutron sources to full use in order to optimise the recorded information quality and reduce measurement time.Comment: 12 pages, 4 figure
    • …
    corecore